Feature Transformation Methods in Data Mining
نویسنده
چکیده
The quality of knowledge extracted from a data set can be enhanced by its transformation. Discretization and filling missing data are the most common forms of data transformation. A new transformation method named feature bundling is introduced. A feature bundle involves a set of features in its pure or transformed form. The computational results reported in this paper show that the classification accuracy of decision rules generated from data sets with feature bundles is enhanced. The proposed concept of feature bundling is applied to a data set from semiconductor industry.
منابع مشابه
Feature extraction in opinion mining through Persian reviews
Opinion mining deals with an analysis of user reviews for extracting their opinions, sentiments and demands in a specific area, which can play an important role in making major decisions in such area. In general, opinion mining extracts user reviews at three levels of document, sentence and feature. Opinion mining at the feature level is taken into consideration more than the other two levels d...
متن کاملA Geometric View of Similarity Measures in Data Mining
The main objective of data mining is to acquire information from a set of data for prospect applications using a measure. The concerning issue is that one often has to deal with large scale data. Several dimensionality reduction techniques like various feature extraction methods have been developed to resolve the issue. However, the geometric view of the applied measure, as an additional consid...
متن کاملCredit Card Fraud Detection using Data mining and Statistical Methods
Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...
متن کاملدو روش تبدیل ویژگی مبتنی بر الگوریتم های ژنتیک برای کاهش خطای دسته بندی ماشین بردار پشتیبان
Discriminative methods are used for increasing pattern recognition and classification accuracy. These methods can be used as discriminant transformations applied to features or they can be used as discriminative learning algorithms for the classifiers. Usually, discriminative transformations criteria are different from the criteria of discriminant classifiers training or their error. In this ...
متن کاملA Comparative Study of Various Data Transformation Techniques in Data Mining
This research paper presents a technique to select an ideal transformation technique of original and transformed features. The paper reviews about a comparative study of various data transformation techniques used in data mining which includes six types of transformation techniques Wavelets, Genetic Algorithm and Wrappers, Identity transform, Program synthesis, Data refinement transformation, a...
متن کامل